normed valuation - Übersetzung nach russisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

normed valuation - Übersetzung nach russisch

VECTOR SPACE ON WHICH A DISTANCE IS DEFINED
Normed space; Normed linear space; Normed vector spaces; Semi normed space; Semi normed vector space; Semi-normed space; Semi-normed vector space; Normed spaces; Seminormed vector space; Vector norms; Linear Algebra/Normed Vector Space; Normable space
  • Hierarchy of mathematical spaces. Normed vector spaces are a superset of [[inner product space]]s and 
a subset of [[metric space]]s, which in turn is a subset of [[topological space]]s.

normed valuation      

математика

нормированная оценка

normable space         

математика

нормируемое пространство

normed space         

математика

пространство нормированное

Definition

normed space
<mathematics> A vector space with a function, ||F||, such that ||F|| = 0 if and only if F=0 ||aF|| = abs(a) * ||F|| ||F+G|| <= ||F|| + ||G|| Roughly, a distance between two elements in the space is defined. (2000-03-10)

Wikipedia

Normed vector space

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x x , {\displaystyle x\mapsto \|x\|,} and has the following properties:

  1. It is nonnegative, meaning that x 0 {\displaystyle \|x\|\geq 0} for every vector x . {\displaystyle x.}
  2. It is positive on nonzero vectors, that is,
  3. For every vector x , {\displaystyle x,} and every scalar α , {\displaystyle \alpha ,}
  4. The triangle inequality holds; that is, for every vectors x {\displaystyle x} and y , {\displaystyle y,}

A norm induces a distance, called its (norm) induced metric, by the formula

which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm, but it is not complete for this norm.

An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula

The study of normed spaces and Banach spaces is a fundamental part of functional analysis, which is a major subfield of mathematics.

Übersetzung von &#39normed valuation&#39 in Russisch